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Abstract— In this paper, we discuss an event detection system
using a wireless sensor network in the Ambient Assisted Living
context. The sensors measure the environment in which the
patients live, not vital parameters of the patient him- or
herself, which is important in order to respect the privacy
and informational self-determination of the patient. The major
difficulties of the given setup with sensors in the environment
are that the measurements are taken in an irregular fashion (as
opposed to regular sampling) and that some of the sensors may
be unreliable. To tackle these problems, we propose an event-
detection framework that is based on the theory of conditional
random fields [1]. We conduct experiments on real-life sensor
data collected from a set of eight households. The experiments
show that the conditional random field is well suited for
ambiance surveillance.

I. INTRODUCTION

In Ambient Assisted Living (AAL), one important aim is
to gather information on the condition of the resident and
to detect when the behavior and/or health status changes.
Only when the resident’s condition is known, we can react
to pathologic changes or emergencies, for example, by
automatically sending a status message to a family member
or calling the ambulance. However, a direct observation of
the patient (i.e., the person who resides in an AAL supported
residence), is not always suitable, because it may conflict
with the acceptance of the patient and usually inflicts the
patients privacy. A good AAL system thus has to respect the
privacy and self-determination of the resident, but also has
to provide the capability to detect whether an interference is
necessary.

In this work, we limit the observation process to taking
measurements within the residence and therefore we only
measure the interaction of the resident with his surroundings,
not the resident him- or herself. That is, we use sensors
that neither have to be worn (for example an emergency
watch) nor have to include direct interactions of the patient
with the system (for example a button that has to be pressed
regularly), nor interfere with the privacy of the patient, like
cameras or microphones. This is an important difference to
several other AAL systems, for example [2] In the paper,
we discuss the statistical analysis of the data and describe
a system for the detection of emergencies and changes in
the resident’s behavior without disclosing much information
about the actual habits or activities and thus guaranteeing
informational self-determination.

The situations which require a third party to react, for

example a medic or family member, are called events. Because
these events are arbitrary, rare, and because we need to react
the very first time they occur, it is not possible to train a
classifier that makes a decision between several well stated
and predefined situations. Therefore we need to model and
understand the usual situations, i.e., the normal case, and
then define the events as the absence of the normal case. This
task will be called event detection in the remainder of the
paper.

The proposed algorithm is based on the theory of condi-
tional random fields [1], which are powerful abstract models
for statistical inference. We describe this method in its
basics. As an addition, we discuss two different strategies of
preprocessing and compare them to decide which provides
better results, and hence with which we proceed in further
analysis. The method provides the possibility to be adapted to
more specialized problems and additional tasks, as well as to
additional sensors that may be installed at a later stage. Hence,
the methods for the statistical analysis also have to be adaptive
and scalable. For example, adaptivity is required, because the
situations and furniture may change within a household in a
normal manner. The algorithms to analyze the data need to
have the possibility to deal with the removal of sensors while
being able to process the data of the remaining sensors, but
also may have to include new sensors. As mentioned above,
we solve these problems by using Conditional Random Fields
(CRFs) [3], [1], [4]. In CRFs, we can increase and decrease
the number of sensors without retraining the whole model,
as will be shown in this paper. Since CRFs do not depend
on a certain (fixed) sampling rate, we can even use CRFs on
different time scales. To discuss this adaptive setting is the
main topic of this paper.

Since AAL monitoring systems are meant to be used
over extended periods of time, we target to detect events
on different time scales, from slow changes that can only be
observed if we consider large periods, for example several
months or years, to sudden events that can be detected if we
consider only a few minutes. In the experiments of this paper,
we discuss the latter case. Because the real-life testing data
does not provide any events so far, and in order to have a
ground truth for the experiments, events had to be artificially
introduced by data manipulation. This will be described in
more detail in the corresponding section.

The rest of the paper is structured as follows. In Section II,
we first describe the currently employed sensors and the
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feature extraction process. Then we discuss the theory of
CRFs in the context of the given application. In Section III, we
apply training and inference on real measured data and show
that the CRFs can be used to model the data. In Section IV,
we discuss our results and give an outlook of the provided
methods.

II. THEORETICAL BACKGROUND AND
INFERENCE

To understand the possibilities of CRFs in the context
of event detection in the AAL setup, we first discuss the
currently employed sensor network before we turn to the
CRFs themselves.

A. Sensor Setup

The sensors are wireless devices with independent power
supply. Each sensor sends its measurement to a central server,
together with a time stamp and the battery status. The sensors
are as follows: a door sensor which recognizes the movement
of a specified door; a Passive Infra-Red (PIR) and motion
sensor placed at the entrance to detect movement at the
entrance door; a motion sensor placed at a specific door within
the household; a PIR sensor to detect movement within a
specific area; a motion sensor which measures the motion of
furniture, usually placed at the bed; a sensor which measures
temperature and humidity at the drainage. Not all households
taking part in the initial studies have all sensors installed,
and not all sensors are online all the time, so in the data,
there is missing information, and the measurements for each
sensor differ between the households because of different
placements or floor plans.

The different kinds of sensors produce very different
measurements. The door sensor, for example, sends ”true” if
the door was used and ”false” otherwise, while the furniture
sensor integrates the movements over a short period and
therefore is a continuous measure. Hence, to apply a unified
distribution to model the data and use tests like a likelihood
ratio test is difficult, especially if we consider to have new
kinds of sensors in the future. A generative model like a
hidden Markov model [5] is also not suitable, because we
either had to assume the distribution of the data, too, or we
would have to estimate it, which can be difficult for unknown
sensors. To overcome this problems, we use CRFs which are
data-driven models [6]. CRFs use the data as such, without
assuming independences, correlations or distributions among
the data. We extend the CRF-based method proposed in [4]
to multi dimensional, irregular sampled data.

Some sensors are inactive when the observed variables
do not change, while others send the information frequently.
Hence we need a strategy to gain data for each evaluation
of the CRF. For this, we integrate the measured data for a
certain time frame.

B. Conditional Random Fields

CRFs are data-driven discriminative, finite state models [1],
[7]. They offer the possibility to conduct inference without
the need to model the distribution of the data in a direct

manner. They transform the feature space to a time and state
discrete space in which the Markov properties hold. It can
be shown [1], [3] that the formulation of the CRF fulfills
the statute of the maximum entropy. That is, depending on
the feature extraction process, the CRFs have the potential
to provide the best classifier for our problem.

In the following, we first discuss the abstraction of the
feature vectors to the state space. Then we turn to the
interpretation of the states and show how we can use them
for the event detection. Therefore, we model the probability
of a state sequence, given the measurements, and we use the
likelihood of each state to decide if we have observed an
event.

Let X be a set of measurements. From this data, we
have a vector representation φ(X, n) at each time step n.
These vectors represent either integrated time windows or
interpolated values over time to get one vector at each time
step, as discussed in Section II-A. We describe the vector
representation in Section II-C.

A CRF determines a probability of a state sequence S,
given the sequence X and a trained model [1]. This probability
is given by

p(S|X)=
1

Z(X)
exp

(
T∑

n=1

λ>Φ(s(n− 1), s(n), φ(X, n))

)
,

(1)
where Z(X) is a normalization constant and λ is a weighting
vector which is estimated in the training phase. In the
training phase, we maximize the log-likelihood of the given
sequence, given the features, using an L-BFGS algorithm
[6]. For details and the training algorithm, see [1], [6], [8].
Φ is a vector-valued function which extracts information
from the pure measurements with the use of the vector
representations φ(X, n) and combines this information with
the state transition from state s(n− 1) to state s(n).

CRFs are trained in an observed manner. That is, the state
sequence S is needed at least for the training data to apply
the training [1], [3]. For the given setup, the data corresponds
with time. Several activities are related to certain time frames,
hence the features also occur at the specific time. To obtain
a discrete-time model, we divide a day into K intervals of
equal length and use this sequence for training. Each normal
case state ζk with k = 1, 2, . . ., K corresponds to a specific
time. We have two classes of events: an event is either a
strange measurement or a normal activity at the wrong time
step.

A critical part of a CRF is the feature function Φ. This
vector-valued function transforms the data into a feature space
in which the CRF can separate the classes. Many applications
use boolean feature transformations, for example [1]. We
also use a feature extraction such that φ(X, n) and Φ(s(n−
1), s(n),X, n) are sparse for any possible feature sequence
X. This simplifies the classification and event detection. We
discuss this function in Section II-C.
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C. Feature Function

It can be shown [1], [6], [8], [3] that we can apply CRFs
using a feature function that processes the data such that each
component of the vector is either 1 or 0. But CRFs are also
capable of processing more general data [4]. In this paper,
we propose a feature transformation that is feasible for CRFs
and useful for the task of event detection.

Because the sensors do not measure their data at the same
time, we do not have all data at every time step, hence we
need a method to extract from this raw data a continuous
sequence. For each minute, we integrate the data for intervals
up to an hour. Hence, the time frame we integrate is a sliding
window with a large overlap. This is a trade off between the
treatment of rare and irregular sampling sensors and regular
sampling sensors with high sampling frequency.

For an easier understanding of the feature transfor-
mation, assume that we have a one-dimensional signal
x(1), x(2), . . . , x(T ) for which each sample x(n) is an inte-
grated time frame of the irregular sampled raw data. Because
we use each dimension of the output signal individually, this
is no loss of generality. In total, we compute L different
features for each sensor. In the training phase, we observe
a minimum value x(min) and a maximum value x(max). We
add a margin δ0 to those two values to define an upper and
a lower bound, x(max) + δ0 and x(min) − δ0, respectively.
In the experiments, δ0 was chosen to be ten percent of the
difference of x(max) and x(max). Moreover we divide the
interval between those boundaries into L − 2 segments of
equal length and test if an observation is in one of those
segments. Further, we test if the observation exceeds one of
the limits. This can be expressed as follows:

x(down)(l) = x(min) − δ0 + l · δ,

x(up) = x(down)(l) + δ

with
δ0 = 0.1 · (x(max) − x(min)),

δ =
x(max) − x(min) + 2δ0

L− 2
.

Then we define L− 2 boolean features

[[x(down)(l) ≤ x(n) ≤ x(up)(l)]],

where the bracket [[P ]] yields the value one if the predicate
P is true and zero otherwise. Further, we define the features

exp(x(min) − δ0 − x(n)) · [[x(n) < x(min) − δ0]]− 0.1

and

exp(x(n)− x(max) + δ0) · [[x(n) > x(max) + δ0]]− 0.1.

All features from all sensors are stacked into a feature vector
φ(X, n).

Note that the last two features are negative if we observe
the normal case. Hence, we gain negative weights λi for
these features for all normal states. When a measurement
exceeds the values observed in the training phase, these
features become positive so the probability of the normal

states declines. In other words, the last two features allow
us to measure an event in which the data exceeds its normal
limits. However, this is not the only type of event we can
detect. The probability for the normal case also becomes
low when the measurements are within the given boundaries
x(min) − δ0 and x(max) + δ0, but are strange for the actual
state.

In the next step, the features are bound to states by a
feature function Φ, and also the state transitions are included.
The feature function Φ is defined as

Φ(s(n− 1), s(n),X, n) =
[[[s(n) = ζk]] · φ(X, n)]

K
k=1[

[[[s(n− 1) = ζj ]] · [[s(n) = ζk]]]
K
j=1

]K
k=1

[[s(n) = ζ0]] · φ(X, n)

 , (2)

where K is the number of possible states ζ1, ζ2, . . . , ζK in
the CRF. The state ζ0 is a slack variable for observations
which are not similar to the training features; it ensures the
property

∑K
i=0 p(s(n) = ζi) = 1, that is, the probability

to either observe the normal case or an event is 1. For an
example of a similar feature function, see [4].

D. Adding and Removing Sensors

One of the benefits we gain by using CRFs instead of
HMMs for the problem at hand is the possibility to simply and
efficiently add and remove sensors, which can be challenging
with other methods. As described in Section II-C, we first
transform the observations and combine them into a feature
vector. Because we do not alter the Markov model, the
addition and removal of new features in the complete model
is as follows.

If a sensor is removed from the sensor network temporarily
(for example, if its battery status is too low), we set all
the features that belong to this sensor to zero. By this and
considering the definition of the CRF in (1) and the feature
function in (2), we can see that in this case, the model still
is appropriate. Of course, with less sensors we consider less
information, which results in a lower significance of our
method. If the sensor is removed permanently, we remove the
corresponding values in the weighting vector λ and feature
function.

For the addition of sensors, we need to train the weights for
new features only. The Markov model keeps constant and the
other sensors are still online. Considering the CRF in (1) and
the feature function in (2), the inclusion of the new sensors is
to lengthen the feature function by the new features and the
weights λ by the new weights only. A detailed description
of this procedure for general CRFs can be found in [9].

III. EXPERIMENTS AND DISCUSSION

The algorithm is supposed to tackle two different targets.
First, we demonstrate that the algorithm is suitable to detect
events, second, we show that we can use the method for
sensor networks which are not reliable, i.e. a sensor can be
offline for periods of time.
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Fig. 1. In (a) we can see that the probability of the actual state drops if we
apply an event. In (b), we have removed a sensor in the marked time frame.

If we observe an event, this probability is supposed to
decrease. If we deactivate a sensor, the probability is supposed
to drop much less then if we observe an event.

For the events, however, we do not have representative
data. Hence, we need to simulate the events. For this, we
manipulate the data at given periods of time. As can be seen
in Figure 1(b), the events can be detected.

For the offline sensors, we set the corresponding features
to zero as described in Section II-D. As can be seen in Fig-
ure 1(a), the probability of the actual state decreases slightly
as expected. The classification itself still is appropriate.

In total, we can detect the events at the correct time, and
we can switch off some of the sensors without suffering a
severe decrease of the power of the algorithm. Hence, we
rate our experiments as a success.

IV. CONCLUSION AND OUTLOOK

We have presented a new algorithm for the detection of
events, using a wireless sensor network in the context of
AAL. The model has shown to be appropriate for this task,
that is, we were able to determine the normal case and detect
unknown events in the sequences. The method is very flexible
and allows us to alter the number of devices in a simple
manner. The experiments have shown that the CRF is capable
to detect the true actual state from the given measurements.
The integration feature extraction method has performed better
than the interpolation in most cases.

The actual lack of events within the real test sequences

is a problem we cannot overcome by further processing.
More importantly, we expect to detect real events in further
experiments, because most of the patients hopefully stay
healthy. So recorded events are very rare, and useful statistics
can be applied on artificial events only. Since the study is
ongoing and further data is being recorded in the households,
real events may be included in future time.

In the future, we want to improve the Markov model we
used in this paper. The first step is considering different time
scales, such that a state does not represent measurements for
minutes, but days and maybe weeks, and span the inference
to analyze data of years. With this, we hope to detect slow,
but pathologic changes.

Several extensions to the proposed algorithm are possible.
For example, the CRF as we have introduced here can handle
very different situations in a single state (at the same time
slot, a patient can relax in his or her flat on one day and
leave it for a walk another day), but we also wish to identify
the subclasses. For this, we can use a similar model as in [7]
to alter our model to include the subclasses.

For further interpretations, the method has to be applied
in long-time studies. We can consider to implement high
level interpretation of each state, sequences of states, and
even include a certain event state as used in [4] to measure
immediate events. We will also analyze additional sensors
which can be included in the system. The analysis we have
discussed in this paper can only be considered as a basis of
the possibilities the system and especially the CRF based
method for event detection may provide.
Acknowledgment This work has been supported by the
Bundesministerium für Bildung und Forschung under Grant
No. 16KT0942.

REFERENCES

[1] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Proceedings of the Eighteenth International Conference on Machine
Learning, ser. ICML ’01, San Francisco, CA, USA, 2001, pp. 282–289.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645530.655813

[2] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang,
Z. He, S. Lin, and J. Stankovic, “Alarm-net: Wireless sensor networks
for assisted-living and residential monitoring,” Tech. Rep., 2006.

[3] A. McCallum, D. Freitag, and F. C. N. Pereira, “Maximum entropy
Markov models for information extraction and segmentation,” in
Proceedings of the Seventeenth International Conference on Machine
Learning, ser. ICML ’00, San Francisco, CA, USA, 2000, pp. 591–598.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645529.658277

[4] D. Matern, A. P. Condurache, and A. Mertins, “Event detection using log-
linear models for coronary contrast agent injections,” in Proceedings of
the First International Conference on Pattern Recognition Applications
and Methods (ICPRAM), vol. 2, Vilamoura - Algarve, Portugal, 2012,
pp. 172–179.

[5] L. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Feb 1989, vol. 77, no. 2, pp. 257–
286.

[6] R. Gupta, “Conditional random fields,” Technical report, IIT Bombay,
2006.

[7] A. Quattoni, M. Collins, and T. Darrell, “Conditional random fields for
object recognition,” in In NIPS. MIT Press, 2004, pp. 1097–1104.

[8] H. M. Wallach, “Conditional random fields: An introduction,” University
of Pennsylvania, Tech. Rep., 2004.

[9] A. Mccallum, “Efficiently inducing features of conditional
random fields,” in Nineteenth Conference on Uncertainty
in Artificial Intelligence (UAI03), 2003. [Online]. Available:
http://citeseer.ist.psu.edu/mccallum03efficiently.html

7321


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

